EVs are a little different than their gas counterpart.
They have four wheels, a steering wheel and a gas pedal... but the mechanics of an EV are much simpler than gas-powered motors. Here's a look at the key systems that most electric vehicles utilize.
Charging your EV requires plugging into a charger connected to the electric grid, also called electric vehicle supply equipment (EVSE). There are three major categories of chargers, based on the amount of power the charger can provide:
AC Level 1
Provides charging through a 120 V AC plug and does not require installation of additional charging equipment. Level 1 can typically deliver two to five miles of range per hour of charging. Level 1 is most often used in home applications, but is sometimes used at workplaces. A full charge may take up to 24 hours with level-1 120 V charging.
AC Level 2
Provides charging through a 240 V plug and requires the installation of additional charging equipment by a qualified electrician/installer. Level-2 chargers typically deliver 10 to 20 miles of range per hour of charging. Level 2 is used in homes, workplaces and for some public charging. Level 2 charging systems provide slight energy efficiency benefits over level 1 chargers - savings estimates vary based on length of charge time.
DC Fast-Charge
Provides charging through 480 V AC input and requires specialized, high-powered charging equipment and special equipment in the vehicle itself. DC Fast-Charging can deliver an 80 percent battery charge or 60 to 100 miles of range for most EV models in about 20-30 minutes of charging. This format is used in public charging stations, especially along heavy-traffic corridors. Plug-in hybrid electric vehicles typically do not have fast charging capabilities.
The failure rate of some electric vehicles batteries already on the road is as low as 0.003%2. There are also high mileage warranties on electric vehicle batteries available with many manufacturers. Several manufactures offer multi-year and 100,000 mile+ warranties on the batteries in their vehicles. Review manufacturer information carefully when selecting an EV model.
EVs produce no tailpipe emissions. Even when the power is generated using fossil fuels, electric vehicles usually show significant reductions in overall global carbon emissions over gasoline vehicles due to the highly carbon-intensive process of mining, pumping, refining and transporting gasoline.
Energy Efficiency
Internal combustion engines are relatively inefficient at converting fuel energy to propulsion as most of the energy is wasted as heat. Electric motors are more efficient in converting stored energy into propulsion, and electric-drive vehicles do not consume energy while at rest or coasting. Additionally, regenerative braking can be used to re-capture energy during braking. Typically, conventional gasoline engines effectively use only 15 percent of the fuel-energy content to move the vehicle or to power accessories, while electric-drive vehicles have on-board efficiency of around 80 percent3.
Electric cars are not completely environmentally friendly as there can be significant issues to consider related to energy and material use in the manufacturing process. This may include energy-intensive manufacturing processes or the mining and refinement of chemicals and materials.
Sources
1 U.S. Department of Transportation, Bureau of Transportation Statistics, the Omnibus Household Survey.
2 U.S. Department of Energy – Energy Efficiency and Renewable Energy Alternative Fuels Data Center, Maintenance and Safety of Hybrid and Plug-In Electric Vehicles.
3 Shah, Saurin D. (2009), Plug-In Electric Vehicles: What Role for Washington? (1st edition). The Brookings Institution. pp. 29, 37 and 43.
4 U.S. Department of Energy – Office of Energy Efficiency and Renewable Energy, Saving on Fuel and Vehicle Costs.
Charging your EV
Charging your EV requires plugging into a charger connected to the electric grid, also called electric vehicle supply equipment (EVSE). There are three major categories of chargers, based on the amount of power the charger can provide:
AC Level 1
Provides charging through a 120 V AC plug and does not require installation of additional charging equipment. Level 1 can typically deliver two to five miles of range per hour of charging. Level 1 is most often used in home applications, but is sometimes used at workplaces. A full charge may take up to 24 hours with level-1 120 V charging.
AC Level 2
Provides charging through a 240 V plug and requires the installation of additional charging equipment by a qualified electrician/installer. Level-2 chargers typically deliver 10 to 20 miles of range per hour of charging. Level 2 is used in homes, workplaces and for some public charging. Level 2 charging systems provide slight energy efficiency benefits over level 1 chargers - savings estimates vary based on length of charge time.
DC Fast-Charge
Provides charging through 480 V AC input and requires specialized, high-powered charging equipment and special equipment in the vehicle itself. DC Fast-Charging can deliver an 80 percent battery charge or 60 to 100 miles of range for most EV models in about 20-30 minutes of charging. This format is used in public charging stations, especially along heavy-traffic corridors. Plug-in hybrid electric vehicles typically do not have fast charging capabilities.
EV Battery Information
Electric vehicle batteries are typically designed to last for the expected life of the vehicle, but battery life should be considered when calculating the extended cost of ownership, as all batteries eventually wear out and must be replaced. Battery replacement is typically costly, but keep in mind that gas powered vehicle equipment, such as motors and transmissions, have a lifespan too. The rate at which batteries expire depends on the type of battery and how they are used.The failure rate of some electric vehicles batteries already on the road is as low as 0.003%2. There are also high mileage warranties on electric vehicle batteries available with many manufacturers. Several manufactures offer multi-year and 100,000 mile+ warranties on the batteries in their vehicles. Review manufacturer information carefully when selecting an EV model.
Emissions & Energy Efficiency
EmissionsEVs produce no tailpipe emissions. Even when the power is generated using fossil fuels, electric vehicles usually show significant reductions in overall global carbon emissions over gasoline vehicles due to the highly carbon-intensive process of mining, pumping, refining and transporting gasoline.
Energy Efficiency
Internal combustion engines are relatively inefficient at converting fuel energy to propulsion as most of the energy is wasted as heat. Electric motors are more efficient in converting stored energy into propulsion, and electric-drive vehicles do not consume energy while at rest or coasting. Additionally, regenerative braking can be used to re-capture energy during braking. Typically, conventional gasoline engines effectively use only 15 percent of the fuel-energy content to move the vehicle or to power accessories, while electric-drive vehicles have on-board efficiency of around 80 percent3.
Electric cars are not completely environmentally friendly as there can be significant issues to consider related to energy and material use in the manufacturing process. This may include energy-intensive manufacturing processes or the mining and refinement of chemicals and materials.
Reduced Operating Costs
The average U.S. household spends nearly one-fifth of its total family expenditures on transportation, thus saving on fuel can make a big difference in the average family's budget4. Electricity is less expensive than gasoline and EVs are more efficient than gas-powered vehicles. Electric prices are also generally much more stable than gasoline prices. On a national average, it costs less than half as much to travel the same distance in an EV than a conventional vehicle. Your savings could be far more substantial if your current gas-powered vehicle gets poor mileage.Reduced Maintenance Requirements
Battery Electric Vehicles (or BEV) require less maintenance than conventional vehicles because there are fewer fluids (like oil and transmission fluid) to change, and far fewer moving parts. EVs require minimal scheduled maintenance to their electrical systems, which can include the battery, electrical motor, and associated electronics. Because of regenerative braking, brake systems on EVs typically last longer than on conventional vehicles.- No Oil Changes: BEVs do not require engine oil, thus there are no oil changes (normally required every 3,000 to 7,000 miles; requirements vary by automobile manufacturer)
- No Spark Plugs and Wires: BEVs do not require spark plugs and wires, thus no replacements (estimated replacement at 100,000 miles on gas engine)
- No Exhaust System: BEVs do not have mufflers or catalytic converters, two components of your exhaust system that can fail and result in expensive replacements.
Sources
1 U.S. Department of Transportation, Bureau of Transportation Statistics, the Omnibus Household Survey.
2 U.S. Department of Energy – Energy Efficiency and Renewable Energy Alternative Fuels Data Center, Maintenance and Safety of Hybrid and Plug-In Electric Vehicles.
3 Shah, Saurin D. (2009), Plug-In Electric Vehicles: What Role for Washington? (1st edition). The Brookings Institution. pp. 29, 37 and 43.
4 U.S. Department of Energy – Office of Energy Efficiency and Renewable Energy, Saving on Fuel and Vehicle Costs.